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 Abstract
Introduction
Background: Considering the poorly understood mechanism of lysine demethylase 1A (KDM1A) in
osteosarcoma (OS), we here commence our investigation to fill the blank.

Material and methods
Methods: Following the transfection as appropriate, 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl
tetrazolium bromide (MTT) and flow cytometry assays were used to determine the viability and
apoptosis of OS cells MG-63, in which the generation of reactive oxygen species (ROS) and the
binding between KDM1A and Bcl-2/ cellular Myc (c-Myc) were separately confirmed via DCF-DA
method and chromatin immunoprecipitation-PCR. Reverse-transcription quantitative PCR and western
blot were finally introduced to quantify the levels of KDM1A/Bcl-2/c-Myc and endoplasmic reticulum
(ER) stress-related factors.

Results
Results: Overexpressed KDM1A enhanced the viability (48 hours) yet repressed the apoptosis and
ROS generation, with the downregulation on ER stress-related factors (C/EBP homologous protein
[CHOP]; proline-rich extensin-like receptor kinase (PERK) and activating transcription factor 4 [ATF4])
yet the elevation of Bcl-2/c-Myc, while its depletion exerted contrary effects. More importantly, KDM1A
could act as the demethylase of Bcl-2/c-Myc, as reflected by the results that the depletion of KDM1A
decreased the enrichment of Bcl-2/c-Myc promoter using the antibody against KDM1A yet increased
the enrichment by the antibody targeting H3K9me2. Bcl-2/c-Myc silencing, conversely, promoted the
ROS generation and apoptosis, elevated the levels of ER stress-related factors and abolished the
effects of KDM1A on OS cells.

Conclusions
Conclusion: KDM1A exerts a repressive effect on the apoptosis of OS cells MG-63 by inhibiting the
ROS generation and ER stress via demethylation of Bcl-2 and c-Myc.Prep
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Abstract 21 

Background: Considering the poorly understood mechanism of lysine demethylase 1A 22 

(KDM1A) in osteosarcoma (OS), we here commence our investigation to fill the blank. 23 

Methods: Following the transfection as appropriate, 3-[4,5-dimethylthiazol-2-yl]-2,5 24 

diphenyl tetrazolium bromide (MTT) and flow cytometry assays were used to determine 25 

the viability and apoptosis of OS cells MG-63, in which the generation of reactive 26 

oxygen species (ROS) and the binding between KDM1A and Bcl-2/ cellular Myc (c-27 

Myc) were separately confirmed via DCF-DA method and chromatin 28 

immunoprecipitation-PCR. Reverse-transcription quantitative PCR and western blot were 29 

finally introduced to quantify the levels of KDM1A/Bcl-2/c-Myc and endoplasmic 30 

reticulum (ER) stress-related factors. 31 

Results: Overexpressed KDM1A enhanced the viability (48 hours) yet repressed the 32 

apoptosis and ROS generation, with the downregulation on ER stress-related factors 33 

(C/EBP homologous protein [CHOP]; proline-rich extensin-like receptor kinase (PERK) 34 

and activating transcription factor 4 [ATF4]) yet the elevation of Bcl-2/c-Myc, while its 35 

depletion exerted contrary effects. More importantly, KDM1A could act as the 36 

demethylase of Bcl-2/c-Myc, as reflected by the results that the depletion of KDM1A 37 

decreased the enrichment of Bcl-2/c-Myc promoter using the antibody against KDM1A 38 

yet increased the enrichment by the antibody targeting H3K9me2. Bcl-2/c-Myc silencing, 39 

conversely, promoted the ROS generation and apoptosis, elevated the levels of ER stress-40 

related factors and abolished the effects of KDM1A on OS cells.  41 

Conclusion: KDM1A exerts a repressive effect on the apoptosis of OS cells MG-63 by 42 

inhibiting the ROS generation and ER stress via demethylation of Bcl-2 and c-Myc. 43 
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Introduction 49 

As the most prevalent primary malignancy of the bone associated with a high 50 

propensity for local invasion and metastasis, osteosarcoma (OS) is a rare tumor for which 51 

complex multidisciplinary management is needed [1, 2]. However, due to the diverse 52 

histological patterns and the shortage of diagnostic biomarkers for most cases, the 53 

diagnosis of OS can be challenging [3]. As such, the identification of the underlying 54 

mechanism concerning the evolution of OS will be of help in the better management of 55 

this rare malignancy [4]. 56 

Recent years have also witnessed the increasing research highlighting the possibility 57 

to cluster OS on the basis of identifying candidate driver genes and developing targeted 58 

therapy using elaborated sequencing analyses [5]. The genes B-cell lymphoma-2 (Bcl-2) 59 

and cellular Myc (abbreviated as c-Myc and known as MYC as well) have been widely 60 

reported to participate in the control of cell cycle and/or the programmed cell death, in 61 

addition to the suggestion on their impact on the biological behaviors of malignancies, 62 

OS, for instance [6, 7]. Specifically, the expression patterns of Bcl-2 and c-Myc and their 63 

correlation with the prognosis of patients have been discussed in an existing study [7]. It 64 

has been underlined that Bcl-2 posed a regulatory effect on the mitochondrial metabolism 65 

for the generation of reactive oxygen species (abbreviated as ROS, the accumulation of 66 

which induces the apoptosis of OS cells via mediating the endoplasmic reticulum (ER) 67 

stress), while such generation of ROS is indicated to be suppressed by MYC, another 68 

prognostic biomarker and therapeutic target of OS [8-11]. Linking the keywords “Bcl-69 

2/c-Myc”, “ROS accumulation”, “ER stress” and “OS” together, we have the reason to 70 

believe that Bcl-2/c-Myc may pose regulatory effects on both ROS accumulation and ER 71 
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stress in OS and herein commence our research to investigate the possible mechanisms 72 

implicated and the potential regulator(s). 73 

Furthermore, the possible efficacy of DNA demethylation therapy in OS has been 74 

indicated, with the underlying mechanism vague [12]. Considering the pivotal role of 75 

DNA methylation status in the most prevalent molecular alternations during 76 

tumorigenesis and the outcome of DNA methylation on the obstruction of the promoter 77 

region (which hampers the transcription of gene and leads to gene silencing), it remains a 78 

challenge to identify the optimal biomarkers which either regulates or be regulated by 79 

DNA methylation/demethylation during the progression of OS [13, 14]. Lysine 80 

demethylase 1A (KDM1A), also known as lysine-specific histone demethylase 1 (LSD1), 81 

symbolizes the first example of the identified nuclear protein with histone demethylase 82 

activity [15]. Specifically, the special role of KDM1A in the epigenetic regulation of gene 83 

expression has been discovered and discussed, as reflected by its capability of removing 84 

methyl groups from mono- and demethylated lysine 4 and/or lysine 9 on histone H3 (i.e., 85 

H3K4me1/2 and H3K9me1/2) and its behaviors as the repressor or activator of gene 86 

expression [15, 16]. And previous study showed that cisplatin directly down-regulate 87 

KDM1A protein expression in a dose-response manner, suggesting that KDM1A is a 88 

downstream target of cisplatin [17]. Indeed, the promoting effects of KDM1A on the 89 

occurrence of OS has been proposed, with a proposal with regards to its inhibitory effect 90 

on the expression of E-cadherin (CDH-1) by its function as the demethylase [18, 19]. 91 

Considering the dearth of research addressing the possible implication of KDM1A/Bcl-92 

2/c-Myc and the role of KDM1A as the demethylase of Bcl-2/c-Myc in OS, we set about 93 

to solve this mystery and commence our research, the results of which are reported as 94 
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follows. 95 

Material and methods 96 

Cell culture 97 

Human OS cell line MG-63 (TCHu124, Shanghai Cell Bank, Chinese Academy of 98 

Science, Shanghai, China) was cultured in minimal essential medium (MEM, E600020, 99 

Sangon Biotech, Shanghai, China) blended with 1.5 g·l-1 sodium bicarbonate (NaHCO3, 100 

A100865, Sangon Biotech, China), 0.11 g·l-1 sodium pyruvate (C3H3NaO3, A100342, 101 

Sangon Biotech, China) and 10% bovine calf serum (BCS, E600001, Sangon Biotech, 102 

China) as recommended by the supplier. Heracell™ VIOS 160i CO2 incubator (51033559, 103 

ThermoFisher, Waltham, MA, USA) was used to ensure the growth of cells, with the 104 

culture condition adjusted to 37℃ with 5% CO2. 105 

Transfection 106 

Prior to the transfection, the pcDNA 3.1 vector (V790-20, Invitrogen, Carlsbad, CA, 107 

USA) was used to construct the overexpression vector of KDM1A (hereafter represented 108 

as “KDM1A” in the figures) via inserting the whole sequence, with the empty vector 109 

without insertion as the negative control (hereafter stylized as “NC” in the figures). 110 

Meanwhile, the short hairpin RNA against KDM1A (abbreviated as shKDM1A, C02001) 111 

and the corresponding negative control (shNC, C03002) were synthesized and obtained 112 

from GenePharma (Shanghai, China), where the small interfering RNAs (A01001) 113 

against Bcl-2 (siBcl-2) and MYC (siMYC) as well as their negative control (siNC, 114 

A06001) were available as well. The sequences used here were provided in Table 1 for 115 

reference. 116 

For the transfection, all processes hereafter were strictly repeated based on the 117 
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manufacturer’s protocols. In a nutshell, MG-63 cells (1 × 106 cells per well in the 6-well 118 

plates) were allowed to grow until the confluence of 90% was reached prior to the 119 

transfection. The transfection reagent lipofectamine 2000 (11668-030, Invitrogen, USA) 120 

and the plasmids were pre-diluted in the Opti-MEM® medium (22600-050, Gibco, Grand 121 

Island, NY, USA) in advance, followed by the addition of plasmids into the transfection 122 

reagent for the 5-minute incubation at room temperature and the introduction of plasmid-123 

lipid complex to MG-63 cells for the final incubation at 37℃ for 48 hours. All cells were 124 

subsequently collected for subsequent analyses. 125 

Cell viability and apoptosis assay 126 

In order to evaluate the viability and apoptosis of MG-63 cells following the 127 

different intervention, a commercial 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl 128 

tetrazolium bromide (MTT) cell proliferation assay kit (E606334) and Annexin V 129 

apoptosis detection kit (E606336) were purchased from Sangon Biotech.  130 

For the viability assay, MG-63 cells were maintained in the 96-well plates at the 131 

density of 2 × 103 cells per well and incubated for 48 hours, and then the prepared MTT 132 

solution (5 mg/ml) in the final volume of 10 microliter (μl) was added into the plates for 133 

additional 4-hour incubation. The formazan solubilization solution provided by the kit 134 

was added following the careful removal of culture medium in each well, after which a 135 

gentle shake was conducted for 10 minutes until the formazan formed was fully 136 

dissolved. The absorbance at 570 nm was read with the help of the iMark microplate 137 

absorbance reader (1681135, Bio-Rad, Hercules, CA, USA) and the viability of MG-63 138 

cells was calculated as appropriate. 139 

For cell apoptosis assay, the binding buffer was pre-diluted and added into MG-63 140 
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cells to suspend the cells to the required density of 2 × 105 cells per milliliter (ml). The 141 

working solution of both Annexin V-FITC (5 μl) was then added to the cells for the 142 

incubation at room temperature for 15 minutes without light. After the rinse with 200 μl 143 

binding buffer and the centrifugation at 100 rpm for 5 minutes, the supernatant was 144 

discarded and cells were continued to be resuspended in 190 μl binding buffer and added 145 

with 10 μl propidium iodide working solution. CytoFLEX S flow cytometer (C09765, 146 

Beckman Coulter, Indianapolis, IN, USA) was used to acquire the data, which were 147 

finally processed in the affiliated CytExpert software (Beckman Coulter, USA). 148 

Cellular ROS generation determination assay 149 

DCFDA cellular ROS assay kit (ab113851, Abcam, Cambridge, UK) was employed 150 

to assess the generation of ROS in MG-63 cells with different intervention [20]. For the 151 

determination, MG-63 cells were allowed to adhere overnight in the 96-well plates with 152 

the indicated density of 2.5 × 104 cells per well, following which the medium was 153 

removed and cells were dyed using 100 μl/well of the diluted DCFDA working solution 154 

at 37℃ for 45 minutes in the dark. The working solution was then replaced with the 155 

buffer and the supplement buffer (two separate terms provided with the kit) at the same 156 

concentration. The Excitation Wavelength/Emission Wavelength (Ex/Em) at 485/535 nm 157 

was read in a fluorescence plate reader (PHERAstar FSX, BMG Labtech, Cary, NC, 158 

USA).  159 

Chromatin Immunoprecipitation-PCR (ChIP-PCR) analysis 160 

A ChIP kit (ab500) ordered from Abcam was used and all processes conducted here 161 

were based on the protocols of producer and previous research [21]. In detail, MG-63 162 

cells in the 6-cm dish (3× 106 cells) were transfected with the shKDM1A/shNC for 2 163 
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days as appropriate, followed by the harvest and fixation in the formaldehyde (HCHO, 164 

A501912, Sangon Biotech, China) for 10 minutes. Then the cell pellets were sonicated, 165 

with the removal of residue via the centrifugation. Following the incubation of primary 166 

antibodies against IgG (ab172730, Abcam, UK), KDM1A (ab195405, Abcam, UK) and 167 

H3K9me2 (PA5-120810, Invitrogen, USA) at 4℃ overnight, cells were continued to be 168 

treated with proteinase K (A004220, Sangon Biotech, China) and the DNA was 169 

harvested. SYBR Green Fast qPCR mix (K1070, APExBio, Houston, TX, USA) was 170 

used to determine the relative enrichment in the promoter of both Bcl-2 and MYC as 171 

guided by the manufacturer. The primers used were listed in the section of “reverse-172 

transcription quantitative PCR”. 173 

RNA extraction and reverse-transcription quantitative PCR 174 

The total RNA of MG-63 cells with different intervention was extracted using the 175 

conventional method with the help of TriZol reagent (15596-026, Invitrogen, USA) and 176 

preserved at -80℃ until use. Following the assay to quantify its concentration with the 177 

spectrophotometer (ND-2000, ThermoFisher, USA), the cDNA synthesis kit (B300537, 178 

Sangon Biotech, China) was employed to synthesize the cDNA. The PCR was finally run 179 

using SYBR Green Fast qPCR mix and CFX96 PCR system (1845096, Bio-Rad, USA) at 180 

the conditions: 95℃ for 2 minutes, followed by 40 cycles of 95℃ for 15 seconds and 181 

60℃ for 30 seconds, as recommended by the manuals. For the quantification of relative 182 

mRNA levels, a calculation method called 2(-Delta Delta C(T)) method was used, with 183 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as the housekeeping control [22]. 184 

The primers used were listed in Table 2. 185 
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Western blot 186 

The protein expressions of Bcl-2/MYC and ER stress-related factors in MG-63 cells 187 

with the indicated intervention were quantified via western blot as appropriate [23]. In 188 

detail, the total protein of MG-63 cells was extracted with the RIPA lysis buffer 189 

(C500005, Sangon Biotech, China) and its concentration was evaluated by bicinchoninic 190 

acid (BCA) protein assay kit (C503021, Sangon Biotech, China) as appropriate. 191 

For subsequent analyses, the protein sample was detached on SDS-PAGE (C631100, 192 

Sangon Biotech, China) and transferred to the PVDF membrane (F619537, Sangon 193 

Biotech, China), after which the membrane pre-blocked with 5% defat milk was probed 194 

with the primary antibodies (Abcam, UK) against Bcl-2 (ab182858, 26 kDa, 1:2000), 195 

MYC (ab32072, 57 kDa, 1:1000), C/EBP homologous protein (CHOP, ab11419, 31 kDa, 196 

1:2000), proline-rich extensin-like receptor kinase (PERK, ab79483, 125 kDa, 1:1000), 197 

activating transcription factor 4 (ATF4, ab184909, 50 kDa, 1:1000) and housekeeping 198 

control GAPDH (ab226408, 36 kDa, 1:1000) at 4℃ overnight. Furthermore, for the 199 

incubation of horseradish peroxide-conjugated secondary antibodies (which was carried 200 

out at room temperature for 1 hour), the antibodies of goat anti-rabbit IgG (D110058, 201 

Sangon Biotech, China) and goat anti-mouse IgG (D110087, Sangon Biotech, China) 202 

were used at the dilution ratio of 1:5000.  203 

For the visualization process, the membrane which has been treated with the ECL 204 

luminescence reagent (C510043, Sangon Biotech, China) was exposed to ChemiDoc 205 

Touch imaging system (Bio-Rad, USA) and the grey value of the membrane was 206 

determined in the affiliated Image Lab™ Touch software as needed.  207 
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Data analyses and processing 208 

All data of at least three independent assays were expressed as mean ± standard 209 

deviation (SD) and analyzed in Graphpad 8 (Graphpad, Inc., La Jolla, CA, USA). Data 210 

between two groups or among multiple groups were compared with independent t test 211 

and one-way analysis of variance, with Bonferroni post hoc test employed as well. The 212 

statistical significance was defined when the p-value was lower than 0.05. 213 

Results 214 

KDM1A overexpression inhibited ROS generation and apoptosis yet promoted the 215 

viability of OS cells MG-63, while its knockdown led to contrary results 216 

In the beginning, we transfected the overexpression plasmid of KDM1A (presented 217 

as KDM1A in the figures) and shRNA against KDM1A (stylized as shKDM1A) into OS 218 

cells MG-63 to reveal the effects of KDM1A on the malignant behaviors of OS cells, 219 

which was proved to be successful, as reflected by the elevated or decreased KDM1A 220 

level in MG-63 cells following different transfection (Figure 1A, p<0.001). Meanwhile, 221 

based on the MTT (Figure 1B) and flow cytometry assay (Figure 1C-D), the knockdown 222 

of KDM1A led to a suppressed viability at 48 hour and an increased apoptosis in MG-63 223 

cells (Figure 1B-D, p<0.001), while its overexpression did conversely to promote the 224 

viability and inhibit the apoptosis (Figure 1B-D, p<0.01). Considering the role of ROS 225 

production in the induction of apoptosis in OS cells [9], the production of ROS in MG-63 226 

cells with either the knockdown or the overexpression of KDM1A was calculated, where 227 

it was evident that the overexpression of KDM1A diminished the ROS production 228 

(Figure 1E, p<0.05), whereas the knockdown of KDM1A produced different results to 229 

aggravate the ROS production (Figure 1E, p<0.001). These results thus indicated that 230 
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KDM1A may aggravate the malignant behaviors of OS cells. 231 

KDM1A overexpression inhibited the ER stress yet promoted the expressions of Bcl-232 

2/MYC in OS cells MG-63, while its silence did conversely 233 

Likewise, the significant role of ER stress in the apoptosis of OS cells has been 234 

emphasized as well [9]. Herein, we measured some related factors, including CHOP, 235 

PERK, and ATF4, were quantified in MG-63 cells after the intervention as appropriate, 236 

where it became evident that the silence of KDM1A increased the expressions of all these 237 

factors (Figure 2A-B, p<0.001), whilst KDM1A overexpression produced contrary results 238 

(Figure 2A-B, p<0.001). Furthermore, with the proposal on the prognostic value of Bcl-239 

2/MYC in OS patients [7], we assumed that Bcl-2/MYC might participate in the 240 

mechanism by which KDM1A exerted its effects on OS cells. Accordingly, the levels of 241 

Bcl-2/MYC were quantified, where it was observable that the silence of KDM1A 242 

inhibited the expressions of Bcl-2/MYC (Figure 2C-F, p<0.01), such effects of which 243 

were opposite to those following the overexpression of KDM1A (which promoted the 244 

levels of Bcl-2/MYC) (Figure 2C-F, p<0.001), proving the regulatory effects of KDM1A 245 

on the ER stress and Bcl-2/MYC in OS. 246 

KDM1A could demethylate Bcl-2/MYC in OS cells MG-63 247 

The role of KDM1A as the demethylase of CDH-1 in OS has illuminated us to the 248 

speculation whether KDM1A could also demethylase Bcl-2/MYC in OS cells as well 249 

[19]. Herein, ChIP-PCR analysis was performed as needed, where it was observed that 250 

the depletion of KDM1A led to the decreased enrichment of Bcl-2/MYC promoter using 251 

the antibody against KDM1A yet caused the increased enrichment by the antibody 252 

against H3K9me2, an important epigenetic modifier of several processes (Figure 3A-D, 253 
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p<0.01) [24]. It was thus suggested that KDM1A posed negative regulatory effects on 254 

Bcl-2/MYC in an H3K9-dependent manner.  255 

The silence of Bcl-2/MYC abolished the effects of KDM1A on the ROS production, 256 

ER stress and apoptosis of OS cells 257 

With the hope to investigate the interplay between KDM1A and Bcl-2/MYC, the 258 

siRNA against Bcl-2/MYC was transfected into OS cells, where it was found that all 259 

these siRNAs decreased the levels of Bcl-2/MYC in OS cells (Figure 3E-F, p<0.01), and 260 

those with the most significant knockdown effects (siBcl-2#3 and siMYC#2) were 261 

employed for subsequent assays.  262 

When it comes to the ROS production, Bcl-2/MYC silencing led to a sharp increase 263 

of ROS production in OS cells MG-63 (Figure 3G-H, p<0.001), whereas the 264 

overexpression of KDM1A did oppositely (Figure 3G-H, p<0.05). Furthermore, we found 265 

that such effects of overexpressed KDM1A on the ROS production in OS cells were 266 

diminished via Bcl-2/MYC silencing (Figure 3G-H, p<0.001). 267 

As to the protein expression of ER stress-related factors, the silence of Bcl-2/MYC 268 

aggravated the levels of CHOP, PERK, and ATF4 (Figure 4A-D, p<0.01), the results of 269 

which were contrary to those following the overexpression of KDM1A (Figure 4A-D, 270 

p<0.01). Likewise, the silence of Bcl-2/MYC also neutralized the effects of KDM1A 271 

overexpression on the ER stress-related factors in OS cells (Figure 4A-D, p<0.01).  272 

Finally, based on the data of flow cytometry, KDM1A overexpression led to a 273 

suppressive effect on the apoptosis of OS cells MG-63 (Figure 5A-D, p<0.001), while 274 

Bcl-2/MYC silencing did oppositely and abolished the suppressive effects of 275 

overexpressed KDM1A on the apoptosis of OS cells MG-63 (Figure 5A-D, p<0.05). 276 
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Taken together, we concluded that KDM1A exerted its effects on the ROS production and 277 

ER stress and OS cells so as to modulate the apoptosis via demethylating Bcl-2/MYC. 278 

Discussion 279 

Existing research has underlined the role of KDM1A as a histone demethylase 280 

during the carcinogenesis, showing the emerging option of targeting KDM1A as a 281 

therapeutic option for cancers [25]. Indeed, KDM1A has been proposed to have 282 

association with different aspects of tumors, the epigenetic regulation of epithelial-to-283 

mesenchymal transition, the stemness and drug resistance, to name a few [26-28]. 284 

Furthermore, the promoting effects of KDM1A on the occurrence of OS has been well-285 

reported, and more importantly, it has been stressed that KDMI1A, being a demethylase, 286 

unleashed its inhibitory effect on the expression of CDH-1 [18, 19]. Considering these, 287 

we have the reason to believe that there must exist other candidate(s) that could both be 288 

demethylated by KDM1A and participated in the underlying mechanism  with regards to 289 

the effects of KDM1A exerted on OS. Upon seeking the candidate(s), Bcl-2 and c-Myc 290 

caught our attention in that they have been widely reported to participate in different 291 

malignancies, OS, for instance [6, 7]. Further experiments have led us to conclude that 292 

KDM1A could indeed demethylate Bcl-2/c-Myc so as to exert its effects on OS, which, to 293 

some extent, additionally proved the participation of KDM1A on OS in a way. 294 

Previous investigation has underlined the fact that the excessive apoptosis may 295 

result from the ROS and ER stress, and both ROS and mitochondria play critical roles in 296 

the induction of apoptosis under the pathologic and physiologic conditions [29, 30]. In 297 

other words, when at high levels, ROS may induce oxidative stress, resulting in the 298 

oxidative damage in the mitochondria and the onset of certain human pathologies like 299 
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tumors, despite the fact that low level of ROS can be beneficial [31-33]. More 300 

importantly, what distinguishes the malignant cells from the normal cells is their 301 

capability of producing increasing number of ROS and their elevated dependence over 302 

the antioxidant defense system [33]. Also, it should be aware that apart from 303 

mitochondria, the ER, being regulated by ROS as well, is a crucial regulator of the cell 304 

death signaling pathway, with mitochondria being another [34]. Under the prolonged and 305 

severe ER stress, the unfolded protein response (UPS), a sequence of reactions underlined 306 

to restore the homeostasis in cells, may become cytotoxic instead of cytoprotective, 307 

triggering some unique signaling transduction mechanisms [35]. CHOP is also known as 308 

growth arrest- and DNA damage-inducible gene 153 (GADD153) or DNA damage-309 

inducible transcript 3 [DDIT3]), which contains an element for the positive regulation of 310 

the mitochondrial UPS [36]. Following the failure to restore ER protein homeostasis, the 311 

prolonged activation of the UPS may initiate the apoptotic cell death by up-regulating 312 

CHOP [37]. Being a master regulator with a pivotal role in the adaptation to stresses, 313 

ATF4 is both a necessity and sufficiency for the ER stress-induced upregulated 314 

expression of regulated in development and DNA damage response 1 (REDD1), a gene 315 

transcriptionally upregulated during ER stress [38, 39]. PERK, serving as the ER stress 316 

sensor and mediator of the UPR, is known to mediate the cell death as well [40, 41]. 317 

When it comes to the association of KDM1A with both ROS and ER stress, it shouldn’t 318 

be neglected that RN-1, a known inhibitor of KDM1A, diminishes the content of ROS in 319 

a murine model of sickle cell disease (SCD) and that the therapeutic targeting of KDM1A 320 

in Ewing sarcoma engages the ER stress response [42, 43]. Existing research has 321 

furthermore highlighted the role of excessive ROS generation and ER stress in the 322 
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induction of apoptosis of OS cells [44, 45]. Based on these perspectives, we additionally 323 

confirmed that the overexpression of KDM1A in OS cells may result in the diminished 324 

apoptosis within via inhibiting the excessive ROS generation and aggravating the ER 325 

stress, along with the decreased levels of ER stress-related factors CHOP, ATF4 and 326 

PERK. However, we should use KDM1A inhibitor such as RN-1 to verify the effect of 327 

KDM1A in OS cells in the future. 328 

DNA demethylation, which is defined as the enzymatic process which results in the 329 

removal of the methyl group from 5-methylcytosine (5meC) via destroying the carbon-330 

carbon bond [46, 47]. Increasing research has highlighted the role of site-specific DNA 331 

demethylation as a possible target for the epigenetic therapy of tumor, like OS [12, 48]. 332 

More importantly, some key regulators in OS have been revealed based on the integrated 333 

genome-wide methylation and expression analysis [49]. Like we mentioned earlier, 334 

KDMI1A, being a demethylase, unleashed its inhibitory effect on the expression of CDH-335 

1 [18, 19]. Considering this, we have the reason to believe that there must exist other 336 

candidate(s) that could be demethylated by KDM1A and participated in the underlying 337 

mechanism by which KDM1A exerted its effects on OS. Upon seeking the candidate(s), 338 

Bcl-2 and c-Myc caught our attention in that they have been widely reported to 339 

participate in different malignancies, OS, for instance [6, 7]. What really surprised us is 340 

the fact that KDM1A knockdown, in response to the stimulation of estrogen, caused the 341 

abrogated expressions of Bcl-2 and c-Myc genes, based on the relevant data in Reactome 342 

database (https://reactome.org/content/detail/R-HSA-9011984) [50-53]. Bcl-2 and c-Myc 343 

are some of the related proteins arguably amongst the most widely investigated in all of 344 

biology, where it has been indicated that Bcl-2 itself is a faction within the Bcl-2 family 345 
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which is known as the “Bcl-2-like” pro-survival proteins, while c-Myc, plays a 346 

predominant role in the apoptosis and shows a co-operativity with Bcl-2 [54]. 347 

Considering these, we have the strong belief that KDM1A may demethylate Bcl-2/c-Myc 348 

in OS cells MG-63 and inversely, Bcl-2/c-Myc may be implicated in the mechanism 349 

underlying the effects of KDM1A in OS. Here, such belief of us was reconfirmed in OS 350 

cells where KDM1A demethylate Bcl-2/c-Myc in an H3K9-dependent manner and the 351 

silence of both Bcl-2/c-Myc not only produced contrary results to those following the 352 

overexpression of KDM1A but also reversed the effects of overexpressed KDM1A in 353 

both ROS generation and ER stress of OS cells. Based on these, a safe conclusion could 354 

be drawn that KDM1A overexpression, opposite to its knockdown, may restrain the ROS 355 

generation and ER stress so as to repress the apoptosis of OS cells, the mechanism of 356 

which may be associated with the demethylation of Bcl-2/c-Myc. 357 

Conclusion 358 

Collectively, linking these investigations together [7, 18], we came up with a novel 359 

discovery where the participation of KDM1A as a demethylase in OS has been re-360 

evaluated and KDM1A-mediated demethylation of Bcl-2/c-Myc may regulate the ROS 361 

generation and ER stress in OS cells MG-63 cells. However, it’s worth noting that despite 362 

the emphasis on the effects of KDM1A/Bcl-2/c-Myc on the apoptosis of OS cells from 363 

the perspectives of ROS generation and ER stress in our current research, some other 364 

mechanisms, DNA damage, for instance, may implicated in the apoptosis of OS cells as 365 

well, as evidenced by the discoveries highlighting the induction of DNA damage on the 366 

apoptosis and the recruitment of KDM1A to the sites of DNA damage [55, 56]. Also, we 367 

only used one OS cell line MG-63 in our current research and it remained vague whether 368 
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same results could be concluded from other OS cells in vitro. These mysteries, 369 

accordingly, will be solved in our future research as appropriate. 370 
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Figure legends 594 

Figure 1. KDM1A overexpression promoted ROS generation and apoptosis yet 595 

inhibited the viability of OS cells MG-63, while its knockdown led to contrary 596 

results. 597 

First, the overexpression plasmid of KDM1A (presented as KDM1A in the figures) and 598 

shRNA against KDM1A (stylized as shKDM1A) were transfected into OS cells MG-63 599 

to reveal the effects of KDM1A on the malignant behaviors of OS cells. (A) The 600 

transfection was proved to be successful, as reflected by the results of reverse-601 

transcription quantitative PCR, with GAPDH as the housekeeping control. (B-D) 602 

Meanwhile, based on the MTT (B) and flow cytometry assay (C-D), the effects of 603 

KDM1A knockdown or overexpression on the viability at 48 h and the apoptosis in MG-604 

63 cells were evaluated. (E) The production of ROS in MG-63 cells with either the 605 

knockdown or the overexpression of KDM1A was calculated in the end.  606 

All data of three independent tests were expressed as mean ± standard deviation. 607 

***p<0.001, vs. shNC; ^p<0.05, ^^p<0.01, ^^^p<0.001, vs. NC. 608 

Abbreviation: KDM1A: lysine demethylase 1A; shRNA: short hairpin RNA; NC: 609 

negative control; OS: osteosarcoma; ROS: reactive oxygen species; MTT: 3-[4,5-610 

dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide; h: hour. 611 

Figure 2. Effects of KDM1A knockdown/overexpression on the ER stress and the 612 

expressions of Bcl-2/MYC in OS cells MG-63. 613 

Likewise, the significant roles of ER stress and Bcl-2/MYC in OS cells has been 614 

emphasized. (A-B) Herein, some ER stress-related factors were measured, including 615 

CHOP, PERK, and ATF4, based on the assay of western blot, with GAPDH as the 616 
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housekeeping control. (C-F) Meanwhile, the protein and mRNA levels of Bcl-2/MYC 617 

were quantified via western blot (C-D) and reverse-transcription quantitative PCR (E-F), 618 

with GAPDH as the housekeeping control. 619 

All data of three independent tests were expressed as mean ± standard deviation. 620 

**p<0.01, ***p<0.001, vs. shNC; ^^^p<0.001, vs. NC. 621 

Abbreviation: ER: endoplasmic reticulum; CHOP: C/EBP homologous protein; PERK: 622 

proline-rich extensin-like receptor kinase; ATF4: activating transcription factor 4; Bcl-2: 623 

B-cell lymphoma-2; MYC: cellular-Myc. 624 

Figure 3. Analysis of KDM1A/Bcl-2/MYC axis on OS cells. 625 

(A-D) ChIP-PCR analysis was performed to determine the enrichment of Bcl-2/MYC 626 

promoter using the antibody against KDM1A or H3K9me2. (E-F) Evaluation of 627 

transfection efficiency of Bcl-2/MYC siRNA via and reverse-transcription quantitative 628 

PCR, with GAPDH as the housekeeping control. (G-H) Interplay between KDM1A and 629 

Bcl-2/MYC on the ROS production in OS cells MG-63. 630 

All data of three independent tests were expressed as mean ± standard deviation. 631 

**p<0.01, ***p<0.001, vs. shNC; ++p<0.01, +++p<0.001, vs. siNC; #p<0.05, ##p<0.01, 632 

###p<0.001, vs. NC+shNC; ΔΔΔp<0.001, vs. siNC+KDM1A; &&&p<0.001, vs. siBcl-633 

2+NC; ‡‡‡p<0.001, vs. siMYC+NC. 634 

Abbreviation: ChIP-PCR: chromatin immunoprecipitation-PCR. 635 

Figure 4. Evaluation of KDM1A/Bcl-2/MYC axis on the ER stress in OS cells. 636 

(A-D) As to the protein expression of ER stress-related factors CHOP (B), PERK (C), 637 

and ATF4 (D) in OS cells MG-63, their levels following the silence of Bcl-2/MYC and 638 

the overexpression of KDM1A were determined via western blot. GAPDH was the 639 
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housekeeping control used.  640 

All data of three independent tests were expressed as mean ± standard deviation. 641 

##p<0.01, ###p<0.001, vs. NC+siNC; ΔΔp<0.01, ΔΔΔp<0.001, vs. siNC+KDM1A; 642 

&&p<0.01, &&&p<0.001, vs. siBcl-2+NC; ‡‡p<0.01, ‡‡‡p<0.001, vs. siMYC+NC. 643 

Figure 5. Determination of KDM1A/Bcl-2/MYC axis on the apoptosis in OS cells. 644 

(A-D) The apoptosis rates of OS cells MG-63 following the silence of Bcl-2/MYC and 645 

the overexpression of KDM1A were calculated with the help of flow cytometry.  646 

All data of three independent tests were expressed as mean ± standard deviation. 647 

#p<0.05, ##p<0.01, ###p<0.001, vs. NC+siNC; ΔΔΔp<0.001, vs. siNC+KDM1A; 648 

&&&p<0.001, vs. siBcl-2+NC; ‡‡‡p<0.001, vs. siMYC+NC. 649 
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Tables 651 

Table 1. 652 

Table 1. Sequences for transfection 653 

Gene Target sequence (5’-3’) 

shKDM1A CTCTCAGAAGATGAGTATTAT 

shNC CATGTCTCAGAAGATAGTATT 

siBcl-2#1 ATCTGGAAATCCTCCTAATTTTT 

siBcl-2#2 TGGAAATCCTCCTAATTTTTACT 

siBcl-2#3 CTGATTCATTGGGAAGTTTCAAA 

siMYC#1 CTGCTTAGACGCTGGATTTTTTT 

siMYC#2 TGCTTAGACGCTGGATTTTTTTC 

siMYC#3 GAGGAAGAAATCGATGTTGTTTC 

siNC CTGAAGGATTCATTCAGAAGTTT 

 654 

Table 2. 655 

Table 2. Sequences of Primers 656 

Gene Primer sequence (5’-3’)  

Forward Reverse 

Bcl-2 GATGACTGAGTACCTGAACC AGCAGAGTCTTCAGAGACAG 

MYC GTAGTGGAAAACCAGCAG CTCTTTTCCACAGAAACAAC 

KDM1A CACAGTTATTTAGAGCGTCA CTTTCTCTTTAGGAACCTTG 

GAPDH ATTGACCTCAACTACATGGT CATACTTCTCATGGTTCACA 
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